Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms
نویسندگان
چکیده
Connecting molecular information directly to microbial transformation rates remains a challenge, despite the availability of molecular methods to investigate microbial biogeochemistry. By combining information on gene abundance and expression for key genes with quantitative modeling of nitrogen fluxes, we can begin to understand the scales on which genetic signals vary and how they relate to key functions. We used quantitative PCR of DNA and cDNA, along with biogeochemical modeling to assess how the abundance and expression of microbes responsible for two steps in the nitrogen cycle changed over time in estuarine sediment mesocosms. Sediments and water were collected from coastal Massachusetts and maintained in replicated 20 L mesocosms for 45 days. Concentrations of all major inorganic nitrogen species were measured daily and used to derive rates of nitrification and denitrification from a Monte Carlo-based non-negative least-squares analysis of finite difference equations. The mesocosms followed a classic regeneration sequence in which ammonium released from the decomposition of organic matter was subsequently oxidized to nitrite and then further to nitrate, some portion of which was ultimately denitrified. Normalized abundances of ammonia oxidizing archaeal ammonia monoxoygenase (amoA) transcripts closely tracked rates of ammonia oxidation throughout the experiment. No such relationship, however, was evident between denitrification rates and the normalized abundance of nitrite reductase (nirS and nirK) transcripts. These findings underscore the complexity of directly linking the structure of the microbial community to rates of biogeochemical processes.
منابع مشابه
Bioturbation: impact on the marine nitrogen cycle.
Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significan...
متن کاملMolecular evidence for sediment nitrogen fixation in a temperate New England estuary
Primary production in coastal waters is generally nitrogen (N) limited with denitrification outpacing nitrogen fixation (N2-fixation). However, recent work suggests that we have potentially underestimated the importance of heterotrophic sediment N2-fixation in marine ecosystems. We used clone libraries to examine transcript diversity of nifH (a gene associated with N2-fixation) in sediments at ...
متن کاملNitrogen cycling in deeply oxygenated sediments: Results in Lake Superior and implications for marine sediments
To understand the nitrogen (N) cycle in sediments with deep oxygen penetration, we measured pore-water profiles to calculate N fluxes and rates at 13 locations in Lake Superior in water depths ranging from 26 to 318 m. Sediments with high oxygen demand, such as in nearshore or high-sedimentation areas, contribute disproportionally to benthic N removal, despite covering only a small portion of t...
متن کاملBenthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre
Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000m depth (730m above bottom), ...
متن کاملSeasonal variation in denitrification and dissolved nitrogen fluxes in intertidal sediments of the Tagus estuary, Portugal
Dissolved nitrogen fluxes and denitrification were studied during 1 yr in intertidal sediments of the Tagus estuary (Portugal). This study focused on the factors regulating both nitrogen fluxes across the sediment-water interface and denitrification, and on the effect of microphytobenthos activity in controlling nitrogen cycling in these areas. Sampling was performed monthly at 2 stations locat...
متن کامل